Energy landscape of 2D fluid foams
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Abstract: The equilibrium states of 2D non-coarsening fluid foams, which consist of
bubbles with fixed areas, correspond to local minima of the total perimeter. (i) We find
an approximate value of the global minimum, and determine directly from an image how
far a foam’s energy is from its ground state. (ii) For (small) area disorder, small bubbles
tend to sort inwards and large bubbles outwards. (iii) Topological charges of the same
sign ‘repel” while charges of opposite sign ‘attract’. (iv) We discuss boundary conditions
and the uniqueness of the pattern for fixed topology.

1 Introduction

A 2D fluid foam or cellular fluid consists of a collection of bubbles separated by a contin-
uous phase which tends to minimize its perimeter energy for fixed bubble areas.

Mathematically, what is the minimal perimeter enclosing a cluster of N bubbles with
known areas [1]7 We estimate the value of the perimeter minimum, and conjecture the
corresponding patterns, for cases that have thus far escaped rigorous study, including large
N, real boundary conditions and area dispersity. We hope to provide insight for future
rigorous mathematical proofs. Physically, most studies on foam structure have focused
on special consequences of the energy minimization [2, 3], such as topology. Here we
derive more general consequences, to address open questions such as: Can we determine
on an image whether the foam is stressed and deformed? How do topology (the number of
neighbors of a bubble), pressure and energy relate? Why do pentagons and heptagons tend
to cluster in pairs in 2D foams? More practically, understanding a foam’s energy lansdcape
is an important step towards predicting the quasistatic stress-strain relationship.

To capture the essential features of energy minimization, we make the following re-
strictions, which we can relax later. (i) 2D foam. (ii) “Dry foam” limit: fluid fraction
¢ < 1. (iii) Weakly disordered foams “close to a honeycomb structure:” both the area
and the edge number distributions have small variance. (iv) Each bubble’s area is con-
stant. In fact, after a mechanical perturbation, bubble walls equilibrate on a much shorter
time-scale than area changes due e.g. to coarsening, wall breakage, cell division, and cell
nucleation.

For N bubbles with given areas {A;—; n} and a line tension v, the foam energy is
simply the sum of edge lengths ¢;; between all pairs of neighboring bubbles ¢ and j (i = 0
denotes the outer fluid):

H=y > (1)

0<i<j<N



Figure 1: Simulated foams with fized areas: (a) A typical configuration of a polydispersed
foam at equilibrium. The top and bottom boundaries are fixed, the lateral boundaries pe-
riodic. Shades of grey encode the topology. (b) A pentagon-heptagon-pentagon-heptagon
cluster artificially constructed in a regular foam with equal areas and periodic boundaries.
(c) Two dipoles (pentagon-heptagon pairs) result in a curvature field in the hexagons
around them. (d) A circular obstacle in the center of a hexagonal foam induces a topo-
logical charge distribution.

At equilibrium, i.e. in a local energy minimum, the foam obeys the Plateau rules
2, 3]: bubble edges are circular arcs which meet in triples at 27 /3 angles [4]. According
to Laplace’s law their algebraic curvatures (k;; = —kj;; > 0 when bubble i is convex
compared with bubble j) relate to the 2D pressure P; inside bubble i: &;; = PZ;P]' . Thus
the algebraic curvatures of the three edges that meet at the same vertex add to zero [5]:

Kij + Kk + Kk = 0. (2)

Eq. (2) extends to any closed contour crossing more edges.

2 Zeroth-order estimate of the global minimum

If all the bubble areas A; are known but their topology is free to vary, the minimum
value (the ground state) for the foam energy exists [6]. However, we do not know how to
determine its value or the corresponding pattern(s). We conjecture [7] that the energy of
a natural, random foam is at least the energy of a collection of regular hexagons with the
same areas A; (i.e. perimeter 3.72 v/A;):

N
min(H) > Hy, = 3.72 %Z VA (3)
=1

This estimate Hj of the global minimum depends only on the area distribution, not the
pattern. Thus given an image, we can simultaneously measure H, through the actual edge
lengths, and Hj, through the areas. The ratio H/H}, is a global marker of the energy
stored in the foam, or how far the foam is from its global minimum at prescribed areas.

We use the extended large-QQ Potts model, which allows large numbers of bubbles, N >
1, no fluid fraction ¢ = 0, fixed bubble areas, a large range of area distributions and quick
equilibration [8] (Fig. la). By biasing the Monte Carlo process, we can apply a steady
shear [8] to prepare a distorted foam: a higher shear rate results in more distorted bubbles,
thus higher initial energy H;. We let the distorted foams relax towards equilibrium, i.e.
towards a local energy minimum. Fig. (2) shows that whatever their initial energies, the
relaxed foams all have final energies Hf 2% above H;. We now write the energy of a
nearly regular foam as the ground state Hj, plus three corrections.

3 Area disorder

A regular hexagon of area A has edge lengths L = 3.72v/A/6. If two bubbles of different
areas A; > A; share a common edge, its length ¢;; obviously cannot be simultaneously



Figure 2: Relazed energy of a random foam (Fig. 1a). The final rescaled equilibrium
energies, Hy/Hy,, after long relazations (106 MCS) are plotted against their initial energy,
H;/Hy,. Note the difference in horizontal and vertical scales.

equal to both L; and L;. The area mismatch, e = (4; — A;)/(A4; + A;), costs an energy
which vanishes only for e = 0 [7]. If the area disorder is small enough [9], the foam reduces
its energy when the topological disorder is small: each bubble is surrounded by neighbors
of nearly the same areas and reaches a nearly regular shape, i.e. bubbles sort according to
their sizes. With free boundaries and no external force field, we expect smaller bubbles
to sort inwards, larger ones outwards.

Figure 3: Photograph of a ferrofluid foam. The heptagon (7) has two pentagonal neigh-
bours.

We observe sorting in an “annealed” ferrofluid foam prepared between two Plexiglas
plates [10]. We tilt the plates from the horizontal plane to an angle of 0.1°, inducing a low
effective gravity field. Large bubbles drift upwards, small bubbles downwards, resulting
in vertical sorting according to size [11]. We then bring the plates back to horizontal, and
the bubbles slowly drift back and settle. The bubbles rearrange and explore the energy
space to find a stable lower energy configuration (Fig. 3) with rounded bubbles and radial
sorting according to size, larger bubbles surrounding smaller ones.

4 Topological disorder and electrostatic analogy

If the fluid fraction ¢ is small enough that we can interpolate P within the Plateau
borders, the gradient of pressure, ~VPis proportional to edge curvatures (Laplace’s law)
and its circulation along any closed contour is zero. Let us relate it to the “topological
charge” which quantifies the deviation from a hexagonal lattice: an n-sided bubble has a
charge ¢ = (6 — n), i.e. a dislocation (6 —n)7/3.

Extending the topological Gauss-Bonnet theorem [12], we have demonstrated the fol-
lowing geometrical Gauss-Bonnet theorem [7]. If a closed contour C' (with 7 its normal)
encloses bubbles with charges g;, then the outwards flux of —VP across C is determined
by the total charge Q =" g¢; :

fcﬁp-ﬁdzcx@, (4)

in analogy with 2D electrostatics.

The analogy (Table I) includes topological “dipoles”, “quadrupoles” and the distortion
they induce in a regular lattice (Fig. 1b, 1c). It even extends to the expression of energy
[7]. An isolated topological charge is rare in real foam, because its energy cost diverges
(logarithmically) with the foam size. Conversely, two charges of opposite sign lower their
energy when they approach, hence the “effective attractive interaction” [2] invoked to
explain the frequency of heptagon-pentagon pairs (Fig. 3).



5 Boundary conditions

The possible boundary conditions for foam are: periodic, Fig. (1b); free, if the foam is
surrounded by a fluid medium, Fig. (3); fixed, if it touches a solid box, Fig. (1d); or some
combination of these three, Fig. (1a).

For a free foam, the outer fluid fixes the pressures at the foam boundary. A fixed
boundary requires that the pressure gradient —VP (perpendicular to each bubble edge,
itself perpendicular to the boundary) is parallel to the boundary. Thus in both cases, the
topological charges should uniquely determine the pressure in the foam as a Dirichlet or
a Neumann problem, respectively [7].

Periodic boundary conditions guarantee that the total charge () = 0 (Euler theorem).
For all other boundary conditions, we can apply the topological Gauss-Bonnet theorem
[12] to the N}, bubbles at the foam’s boundary: the total charge of a foam is Q = (N, +6).
Introducing a modified definition § = (5 — n) instead of (6 — n) for the N, bubbles
at the boundary is convenient: the total topological charge of a foam becomes simply
Q=G =6 (i.e. a dislocation of 67/3 = 27).

The shape of the bounding box (or the concave boundary of an obstacle placed in
the middle of the foam, Fig. 1d) determines the distribution of these 27 (—27) among
the bubbles touching the boundary. If boundary has all corner angles a multiple of 7/3,
all bubble edges can simultaneously be straight (isobaric foam). In general, however, the
boundary results in curved bubble edges.

6 Summary

The equilibrium energy of 2D foams with given bubble areas helps explain foam structure.
The zeroth-order estimate of the ground energy, Hy, is a function of the area distribution
only, independent of the topology. The ratio H/Hj provides a global marker of how far
a foam is from its ground state. We have similarly defined a local marker for each edge
length, allowing an intrinsic definition of strain [7].

The present analysis, independent on the characteristic size and energy scales, phys-
ically explains the different contributions to a foam’s energy: area mismatch, topology
and boundaries. It predicts the foam configurations corresponding to ground states and
is valid for foams in which bubble areas vary slowly.

The pressure, edge curvature and topological charge form a set of good variables to
characterize a foam. They present a profound analogy with 2D electrostatic potential, field
and charge, respectively, through the geometrical Gauss-Bonnet theorem (eq. 4). The
topology determines a foam’s energy and pattern and explains the origin of topological
and geometrical correlations. Bubbles sort according to size. Topological charges of same
sign repel and of opposite sign attract.

Acknowledgments: We would like to thank F. Morgan, N. Kern and P. Swart.
Y.J. is supported in part by DOE under contract W-7405-ENG-36. J.A.G. is supported
by NASA grant NRA-98-HEDS-03, DOE grant DE-FG02-99ER45785 and NSF grants
INT96-03035-OC and INT98-02417-OC.



potential field charge
2D electrostatics potential V' electric field vive electric charge e
2D foams pressure P curvature o« —V P topological charge o (6 — n)

Table 1: Proposed analogy between foams and electrostatics in two dimensions.
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